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Abstract- Since it was first presented in 2002, Optical 
Projection Tomography (OPT) has emerged as a powerful tool 
for the study of biomedical specimen on the mm to cm scale. In 
this paper we present computational tools to further improve 
OPT image acquisition and tomographic reconstruction. More 
specifically these methods provide: (A) semi-automatic and 
precise positioning of a sample at the axis of rotation (AR) and 
(B) a fast and robust algorithm for determination of post 
alignment values throughout the specimen as compared to 
existing methods. These tools are easily integrated for use with 
current commercial OPT scanners and should also be possible to 
implement in “home made” or experimental setups for OPT 
imaging. They generally contribute to increase acquisition speed 
and quality of OPT data and thereby significantly simplify and 
improve a number of three-dimensional and quantitative OPT 
based assessments. 

 
Index Terms—Biomedical image processing, optical projection 

tomography, pancreas, islets of Langerhans, artifacts, post-
alignment, axis of rotation. 

I. INTRODUCTION AND BACKGROUND 
ptical projection tomography (OPT) could be viewed as 
the optical equivalent of X-ray computed tomography 

(see Fig. 1 and [1]), and was initially introduced as a novel 
technique for three-dimensional (3D) visualization of 
embryonic scale specimen [2]. As such, the technique has 
already contributed to a large number of studies aimed at 
addressing a broad range of biological questions in diverse 
systems such as human, mice, chicken, fly, zebrafish and 
plants (see e.g. [3]-[8]).  
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More recent adaptations have further enabled the use of the 
technique for studies of specimen on the adult mouse organ 
scale [9], individual cell nuclei [10] and for longitudinal 
assessments of organ cultures [11]. However, as with any 
young technology, OPT is associated with a number of 
technological hurdles. In the case of OPT, these most 
commonly relate to artifacts introduced by the tomographic 
reconstruction process itself or to those of an optical nature. 
Improved protocols to circumvent such obstacles will directly 
impact on the accuracy by which OPT can be used for 
visualization and quantitative assessments of biomedical 
specimens. One example where such improvements are highly 
called for comes from studies of the mouse pancreas, which is 
the dominant model for studying the genetics and progression 
of diabetes disease aetiology. The pancreas is composed of 
small insulin-producing micro organs, the islets of 
Langerhans, which are scattered in thousands throughout the 
much greater exocrine parenchyma. The scattered organization 
of the islets in combination with the size and optical properties 
of the gland put high demands on the tools utilized. We have 
previously demonstrated the capacity, by OPT, to visualize 
and to quantify the islet insulin-cell (β-cell) distribution 
throughout the volume of the gland, down to the level of the 
individual islets [9], [12]. These assessments however were 
dependent on protocols involving an unwanted degree of 
subjectivity [9], [13], [14]. The pancreas thus appears as a 
good example of a structurally complex organ that is generally 
considered “challenging” from an imaging point of view, be it 
by OPT or by other imaging modalities [15]. We have 
therefore selected to illustrate the functionality of the 
developed computational tools primarily using this organ 
system. However, as demonstrated by OPT imaging of other 
specimen (including mouse liver and embryonic gut) these 
tools may be easily integrated into OPT based assessments of 
other organs or tissues, using currently available commercial, 
“home made” or experimental set ups for OPT scanning.  

Towards the goal of generating high-quality undistorted 
OPT tomographic reconstructions we propose the following; 
1) A pre-acquisition automatic calculation of the displacement 
distance needed for aligning a sample at the axis of rotation 
(AR), discussed in sub-section II-A, with comparison to 
existing methods. 2) A precise (with a precision of 0.01pixel 
as proven in the referenced literature) post-acquisition 
alignment detection and correction algorithm, exploiting the 
recently introduced single-step discrete Fourier transform 
(DFT) approach, that eliminates subjectivity in choosing the 
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alignment values, ∆γ, (sub-section II-B). Section III presents 
comparison to other methods and shows some tomographic 
reconstruction results. Finally, concluding remarks are drawn 
in section IV. 

II. METHODOLOGY 
For maximum reconstruction quality, the sample must be 

optimally placed on the axis of rotation (AR). This manifests 
itself as a pre-scan translation of the region of interest with 
respect to the AR, in both directions (X Y) in the 3D world, 
which correspond to translations along the x-axis in the 2D 
image coordinate system. The specimen is fixed on a magnetic 
mount attached to a central shaft and therefore no correction is 
needed along the Z-axis, i.e., no vertical drop is associated 
with our scans; see Fig. 2a. In the following sub-section, we 
describe an approach based on image processing to aid in 
aligning the sample at the AR (correction of X, Y 
misalignments). This process could easily be made automatic 
and fully integrated into the scanner. Sub-section B highlights 
the correction for the second deviation, post-scan shifts along 
the x-axis in the 2D world. For the below sections, the 
algorithms were implemented using MATLAB ver 7.11.0.584 
and IP Toolbox ver. 7.1 running on a 64-bit workstation 
running Windows XP and 16.GB of RAM, 2.99 GHz. 

A.  Selecting and positioning a region of interest (ROI) 
on the axis of rotation 

Background and motivation 

The arbitrary mounting of a specimen on the OPT scanner’s 
motor requires an efficient way to position a specimen at the 
AR. Inaccurate positioning of the specimen at the AR results 
in unwanted blurring effects after reconstruction of sinograms. 
How intense this artifact is depends on the distance of the 
region of interest from the axis-of-rotation (AR). Moreover, 
AR misalignment causes the specimen to oscillate from side-
to-side during a rotational image capture, limiting down the 
magnification needed to keep it in view [16].  

In most cases specimens are not of homogenous structure 
and therefore it is not intuitively obvious where the ideal 
centre of the specimen lies. To the best of our knowledge, 
there is currently no objective method to allow for a pre-
acquisition determination of the distance of the sample centre 
to the AR in OPT. This determination is also an issue for 
single photon emission computed tomography (SPECT) as 
shown in a recent study by Hyun Kim et al. [16]. They 
describe a laser-based alignment system, which provides a 
physical approach towards solving the problem in SPECT 
with a pinhole collimator. However, translated to OPT 
imaging, this setup would require additional mechanical 
resources to be fitted into the OPT architecture. In contrast, 
the work described in this manuscript is a software-based 
system and therefore highly integratable.

 

   
Fig.1. A simplified schematic view of the OPT set-up (emission-OPT). (a) A fluorescent antibody labeled specimen is embedded in agarose and made 
semitransparent in an organic solvent (typically a mixture of benzyl alcohol and benzyl benzoate). Images are recorded on a CCD chip throughout a full 360° 
rotation. Using computer software the original 3D information is subsequently recalculated. In emission projection tomography the specimen is exposed to an 
excitation light (green) and as a result the fluorochrome labeled antibody emits light (red), which is captured on a CCD chip. Of note, in emission OPT the signal 
from endogenous tissue fluorescence may in most cases be used to recreate the outline of the specimen. This channel, which is normally collected in the green 
spectrum, is referred to as the “anatomy” channel. The sketch also illustrates the axis of rotation in relation to the depth of field (DOF) and (b) the manual tool 
provided in the SkyScan software to position a specimen at the AR. “>>>” for big steps and “>” for small steps to the right respectively. 
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An automated method to position the region of interest 
(ROI) on the AR is that of Sharpe and Perry [17] while 
discussing their prototype design of a rotary stage for imaging 
a specimen. The selection of the ROI in their method can be 
performed as a subjective user choice. In their system, the user 
is presented with four images of the specimen, rotated to 0, 90, 
180 and 270 degrees. The user then manually selects where 
the ROI is positioned in each image, a histogram thresholding 
of the specimen is then applied to distinguish the specimen 
from the background, see column 11 (step 3) in [17]. This 
approach allows flexibility for the user to concentrate the scan 
on an arbitrary sub-region of the specimen (for example one 
pancreatic lobe), which means that whole-pancreas scans may 
not be aligned to the most optimal position. Then a fully-
automated magnification-based iterative algorithm, 
comprising eleven steps, is triggered, each time calculating (1) 
with four acquired views and correcting for the total 
displacements along the X and Y axes until the specimen fills 
up the FOV. The patent describes how to calculate the X and Y 
offsets, to keep the sample on the AR. The total displacements 
( tt YX , ) are then derived and applied during any subsequent 
rotations.1 
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In the above equations, D represents the distance of the ROI 
from the stepper motor axis. 1X is the X-position of the ROI at 

o0=α , 2X  is the X-position of the ROI at o180=α , 1Y is the 

Y-position of the ROI at o90=α , 2Y  is the Y-position of the 

ROI at o270=α , and wX  is the width of the imaging 
window (FOV) with the term 2/wX  denoting the AR. 

From our perspective the hardware stage presented in the 
patent would, if implemented, appear useful from a practical 
point of view. 

In the following section, we describe our proposed method 
(COM-AR) that requires only two projections, 0 and 90 
degrees, corresponding to the X and Y directions, which are 
sufficient to define a motion path around the AR. We use a 
computerized calculation to find the region of interest (using 
the GFP-anatomy channel), which is in our case the center of 
mass (COM), rather than allowing arbitrary ROIs. The 
algorithm is tested on real heterogeneous shaped specimens. 
The obtained results show that two views are all what is 
needed to determine the required displacements to an accuracy 
of less than ¼ pixel. 
 
 
                                                            
1 In this section, and from this point onwards, we shall use (x y) to refer to a 
point in the 2D image coordinates, and (X Y Z) in the 3D world coordinates. 

Proposed method (COM-AR) 

To make the problem tractable at the pre-acquisition level, 
i.e., before the scan starts, two views of the specimen are 
previewed and exported, namely rough estimates of the 
projection with the largest possible area of the imaged 
specimen (view1), treated as 0o view associated with the X-
axis, and its 90o view (view2), associated with the Y-axis, for 
both the anatomy and signal channels. These views define the 
planes of motion. Unlike the pancreas, which is heterogeneous 
in shape, these views are normally easy to identify in more 
symmetrical objects. The rationale behind using the anatomy 
channel, a quasi-solid object, is that its binary image often 
shows a better approximation of the object’s shape (outline) 
that is not contaminated with inner details. The use of the 
“signal” channel, on the other hand, is to have its features 
form references for manual centering. Having that in mind, the 
algorithm goes as follows:  

Suppose we have the different exported 
images sasa ffss ,,, , corresponding to view1-anatomy, view1-
signal, view2-anatomy and view2-signal, respectively. The 
ROI positioning at the AR can be seen as finding the vertical 
line passing through the geometric center of mass (COM) 
coordinates along the two orthogonal directions. To translate 
this representation to the real 3D world, the mounted 
specimen, it is sufficient to calculate the COM twice, once for 
view1 and another for view2 planes.  

But before attempting that, anatomy channels need to be 
thresholded. It has been often the case that specimen outline is 
approximated using conventional thresholding [17], or by 
means of applying certain edge operators [18]. The two 
methods are useful only when there is enough contrast 
between image background and a signal (specimen), e.g., two 
distinct Gaussian distributions. However, it is not always 
possible to find such analytical expressions; therefore, 
resorting to more elaborate techniques such as the expectation-
maximization (EM) method may therefore be necessary. In the 
EM algorithm, the maximization phase computes parameters 
maximizing the expected log-likelihood function derived from 
the ‘E’ step [19]. Since the EM is an iterative function, one 
way to speed up the convergence is to subsample the 
projection image without amplifying noise and here the Haar 
2D discrete wavelet transform (DWT) comes in handy.  

Suppose that we want to segment a signal from an input 
projection image denoted by the function af having the 
dimensions of mxn then we have 

22 ])[( ↑↓= ata fEMf ,                                                         (2) 

where taf denotes the segmented signal and . is the absolute 
value. Note that EM is applied only on the approximation 
coefficients while the other three details subbands, 
(i.e., D

nm
V

nm
H

nm ,,, ,, ψψψ  in the horizontal, vertical and diagonal 
directions respectively), are zeroed out to prevent interference 
of high frequency signals since the aim is to obtain a binary 
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image. It is possible to apply the EM on lower levels; 
however, it is sufficiently accurate for most practical purposes 
to restrict that to two levels only which are shown in (2) by the 
inner arrow for down-sampling and the outer arrow for up-
sampling. 

Now, if the thresholded binary images of as and af using (2) 
are given by tas and taf respectively, then COM points (x 
coordinates) are derived by 
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where il signifies the specimen area in the two projections 
which is easily obtained by voting for the largest labeled 
connected component in the 2-D binary image, and asx , afx  
are the COM x-indices of view1-anatomy and view2-anatomy, 
respectively. 

Hence, the corresponding translation offset shown in Fig. 2 
(a, bottom), where lines passing through COM and AR must 
totally overlap, is in fact analogous to a spatial shift along the 
X axis (view1) and Y axis (view2) as indicated by the top tiny 
arrows in Fig. 2 (b). This fact reinforces the requirement for 
only two projections as discussed earlier. In Fig.2 (b) the 
parallel vertical lines correspond to AR and the line passing 
through the COM point in each view. The tiny arrows on the 
top show the X and Y distances of the center of the specimen 
from the axis of rotation (AR) of the primary stepper motor. 
This distance could very easily be measured in pixels and 
converted to stepper motor units (displacements of the 3D 
position in µm) as the zoom factor is a known parameter. 
However, we stop at this stage and supply the user with view1 
and view2 with the specimen COM lines superimposed on the 
two images acting as reference points allowing manual-
referenced centering of the specimen at the AR so that the 
sample could spin on its own axis. 

 

                    
 

 
Fig. 2. Specimen positioning at the correct AR. (a) Graphical model of a tomographic slice from the GFP-anatomy channel (8 weeks female C57BL/6 mouse 
dorsal pancreas) depicting the relationship between the axes associated with 3D imaging. Note that the positioning solution is the one which results in 
translations along the X and Y axes so that the AR passes through the COM. (b) 0° (view 1) and 90° (view 2) projections (emission OPT) of a mouse pancreas 
labeled for insulin (dark areas). The above alignment scenario can be achieved via a global synchronization of the two shown axes in both views. Images are 
inverted and gamma enhanced to increase clarity. 
 

Taken together, the AR and COM mismatch is therefore 
resolved by means of digital image processing. The algorithm 
provides a stable performance even when having a severe 
blurriness (out of focus) as depicted in Fig.A3 in the 
Appendix. Note that the described COM based alignment 
applies primarily to samples where the entire specimen forms 
the ROI. To contrast the effectiveness of the algorithm, we 
generate an off-axis scan of a pancreas and a control scan 
using the described COM automatic alignment at the AR. In 
order to eradicate any bias, the reconstruction is carried out 

using the filtered back-projection (FBP) algorithm, post-
alignment is roughly tuned for both scans and the intensity 
dynamic range is uniformly set across all sections and for both 
scans allowing some background tissue noise and ring artifacts 
to appear. The purpose hereby is to form an unbiased analysis 
of the effect of COM mis-positioning. Cross-section top views 
of the two scans are shown in Fig. 3 (a, b) and the effects on 
spatial intensity is depicted in Fig. 4. To conclude, the AR-
COM mismatch is characterized by a blurring effect and not 
by the ghost-shadow layer shown in Fig. 5. 

(a) 

(b)

View1 View2 

 AR 

Specimen COM 
axis 

COM 

Z-axis Y-axis 

X-axis 

 AR 

Z-axis 

X-axis Y-axis 



IEEE TMI‐2011‐0360 

                
 
Fig. 3. A visual comparison of the effect of on versus off-axes positioning on tomographic section data. (a) A tomographic cross-section of a mouse pancreas 
shown in fig. 2b scanned using, the COM-AR method for aligning the sample at the AR, the ring artifacts are deliberately left since they are all perfectly centered 
at the true AR allowing validation of the precision of the COM-AR algorithm. (b) Off-axis positioning at the same level as shown in (a). 

 
 

                               
 

                      
 

Fig. 4.  A pronounced spatial improvement gain is obtained when using the COM-AR. (a) The focus is enhanced throughout the sample, when applying the 
proposed COM-AR algorithm. (b) Diagram depicts the improvement of correlation between parallel projections (as sketched in Fig. 4 (e)) of the scanned raw 
data using the described method and off-axis quantified by correlation coefficients. Note that the correlation between the overlapping first and last frames (0o and 
360o) ideally equals to 1, and in this experiment was 0.9904 for the proposed and 0.9810 for the off-axis scans. (c-d) The shifts measured in pixels in both y (c) 
and x (d) directions in the 2D projection. The shift along the x direction will be compensated for in the next section when we discuss the post-acquisition 
alignment.  (e) Opposing or mirrored projections of the specimen used for comparisons in b-d. 
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The blurring effect is caused by acquiring out-of-focus 
projections as can be seen in Fig. 3 (b). In Fig. 3 (a), the 
specimen is well centered at the AR assuring the best focus of 
most of the detail. This agrees reasonably with a second 
characteristic, a well aligned sample at the AR helps improve 
the correlation between { } { }TT and )270(,90)180(,0 oooo  
projections after mirroring the latter projections with the 
transform T, see Fig. 4. The former angles are used in Section 
B. As can be expected, the correlation is never around 
perfection, 1, owing to physical constrains (e.g., fiber and 
other particles floating around the specimen in BABB, a 
clearing agent, or captured within the agarose), photo 
bleaching, tissue thickness, light scattering or to minor shifts 
along the x-axis in the 2D projections (this factor is 
compensated for by using post-alignment corrections which is 
discussed in the next sub-section). This phenomenon is also 
observed in SPECT/CT. An exact alignment can be lost either 
by poor calibration of the relative position of the modalities’ 
isocenters or by a change in the SPECT centre of rotation [20]. 
 

B. Post-acquisition misalignment detection and 
correction 

Background and motivation 
The 2D horizontal misalignment can be approximated by 

comparing scanned images corresponding to the two 
projections at { }T)180(,0 oo∈θ , where T denotes the mirror 
spatial transformation, i.e., horizontal flip. In an ideal world, 
the two should perfectly correlate, hence ∆γ=0. The latest 
version of the well-known reconstruction package, Nrecon2, 
employs a least-square minimization algorithm to achieve the 
post-alignment [21].  

A post-correction attempt is made by Walls et al. [22] 
where it is demonstrated that a reconstruction with an 
incorrectly identified AR can be regarded as a convolution of 
the correct signal and a blurring function. The maximum 
variance is then calculated from a series of variances 
corresponding to reconstructions of the same slice having 
different AR positions. In their view, this maximum value 
pinpoints the ideal reconstruction as it is assumed to be the 
least blurred. We argue that this dependency on the variance is 
a less safe measure since the variance is a statistical descriptor 
of intensity distribution that can be deceived by the chosen 
dynamic range used in reconstruction. This technique is 
borrowed from the “autofocus” correction field in 2D images 
[23]. The case with 3D stacks may demand further verification 
of generalizing the found AR position to the remaining 
tomographic slices. This is because the said blurring function 
is more likely to be non-constant along the Z stack. 
Nevertheless, Birk et al. [24] adopted Walls et al.’s technique 

                                                            
2 Nrecon (ver. 1.6.1.0, 2009), a cluster reconstruction software, supplied by 
SkyScan (http://www.skyscan.be), Belgium. 

where they refer to the AR deviations as longitudinal shifts; 
Meyer [25] followed the same method. It is noted in Walls et 
al. [26] that reconstructed OPT images experience blurring 
effects that worsens with increasing distance from the AR. 
However, the ghost shadow effect shown in [26], namely fig. 
6c therein in the reference, is more an attribute to imprecision 
in calculating the ∆γ. 

We observed that ∆γ values across the specimen exhibit a 
very unique pattern; see Fig. 6 (b). In the specimens utilized in 
this study these values gradually change in a quasi-linear 
fashion. This pattern re-enforces the notion that this distortion 
is due to the angle of the camera around the optical axis. To 
this end, an automatic fast algorithm to compensate for the 
miss-alignment, benefiting from the recently introduced 
efficient sub-pixel image registration, is discussed. 

Proposed method : Discrete Fourier Transform Alignment 
(DFTA)  

Image registration is extensively studied in the literature 
and various methods have been proposed. In this work, images 
are registered in the Fourier domain following the single-step 
DFT (SDFT) approach which implements a matrix 
multiplication implementation of the 2D DFT to refine the 
initial peak location estimate [27]. The authors of this 
reference show that the computational time complexity of 
their algorithm is ),(MNkΟ  where k is an up-sampling factor, 
compared to the conventional inverse FFT (Fast Fourier 
Transform), which is 
{ } MNkNkkMMNk ≤∀+Ο ,))](log()[log( , where O is the 

asymptotic notation and MN denotes the image 2D 
dimensions. This is proven to be useful especially when 
registering large volumes of data, which is the case for OPT 
that produces in the range of 1000 tomographic sections with a 
typical resolution of 1024x1024 . 
   Let a reference image be denoted by, ),( yxf , and its 
spatially translated version by ),( yxg shifted by yx ∆∆ , . The 
two-dimensional DFT of both signals are given by uppercase 
letters, i.e., ),(),,( yxGyxF , respectively. M and N are the 
image dimensions and (*) is the complex conjugate. The 
cross-correlation is thus given by the relation 

∑ ∆−∆−=∆∆ ∗

yx
fg yyxxgyxfyxreg

,
),(),(),( ,                      (4) 

which in the 2D Fourier domain is given by;                                               
[ ]))()((2exp),(),( 11

,

−−∗ ∆+∆= ∑ NyvMxuivuGvuF
vu

π  

   where regfg is the registered image of g(x,y) based on the 
reference image f(x,y), i is an imaginary unit used to allow for 
complex number calculation, x=0, 1, 2, …, M-1 and y=0, 1, 2, 
…, N-1 being discrete variables in the spatial coordinate 
system and u=0, 1, 2, …, M-1 and v=0, 1, 2, …, N-1 denoting 
the variables in the frequency domain.  
Thus, the shift ∆γ is derived from the calculated peak 
coordinates and given by ∆γ= ∆x/2, dividing the error equally 
between the two projections, where x is the net row shift.  Fig. 
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5 gives an example of the influence of ∆γ on the 
reconstruction. If this value is repeatedly calculated for each 
section the outcome would approximate a linearly decreasing 
function. However, due to physical changes, which hinder 
arriving at a stable perfect correlation of the two projections 
belonging to { }T)180(,0 oo∈θ , the absolute majority of these 
values will adhere to this linearity. This can be regarded as an 
over-determined system which can be solved by a simple 
standard linear least squares (LLS) function, see Fig. 6, thus 
finding ∆γ for each individual reconstructed section. The 
observed ∆γ values behave as predicted even in the presence 

of some amount of noise in the projection data. Without loss 
of generality, the LLS(∆γ) algorithm can be described as a 
strictly decreasing monotonic function.  

Consequently we can argue that it is sufficient to find the 
shift in two blocks, one at the top level of the specimen and 
the second at the bottom, and then interpolate the in-between 
sections by LLS since linearity is now assumed. As illustrated 
in Fig. 6a, the block size is arbitrarily chosen and is in our case 
eight pixels in height, which includes enough features to 
facilitate the correlation process. 

 

 
 
 

Fig. 5. Tomographic sections illustrating the sensitivity in selecting ∆γ. ∆γ =4 (optimum), ∆γ =6 through 12 where the ghost-shadow effect gradually starts to 
show-up - Images are gamma enhanced to increase clarity. This recognized effect is attributed to mismatches between projections and their mirrored ones. The 
tomographic sections are derived from the mouse pancreas shown in fig. 2 labeled for insulin in which the islets of langerhans ideally would appear as compact 
oval or circular objects. 
   
After calculating the amount of x-shift across the chosen 
sections, this range of values could be fed into the 
reconstruction software to perform the cone beam filtered 
back-projection (CB-FBP) algorithm with different values for 
different sections. However, if we allow for different ∆γ on 
different sections, as is the case in [24], [25] and [22], 
geometric distortions will be introduced to the final 
reconstruction stack. Therefore, we need to determine an angle 
with which we rotate all the projections around a given located 
center to yield a unified ∆γ across all sections. 

Let the obtained LLS estimated function be given 
as }...,3,2,1{, nii =ρ  where n denotes the height of the 
specimen, then the corresponding angle that this straight line 
makes, e.g., the difference in the y direction in the plots shown 
in Fig. 8, can be computed by means of the gradient using the 
central difference approach which is generally a more accurate 
approximation to the first derivative than the forward 
difference. 

 
y

m i
y ∂

∂
=∇

ρ , ))180//(( πθ ym∇=∴                                       (5) 

The calculated angle, θ, is in degrees. In order to rotate the 
projections in the correct manner, the rotational centre point 
must be located. The x-coordinate of this point is the index 
point where the corresponding post-acquisition alignment 
magnitude is zero or approaches it, 

i.e., 0))((|)(| 2 ≈∆=∆ γγ LLSLLS . By using the COM-AR 
discussed in (section A) the y-coordinate would be M/2 where 
M is the number of columns in the projection image. 
Depending on how far the x-coordinate is from the center of 
the image, all projection images, i.e., 0o-360o, must be padded 
with a blank array as illustrated in Fig. A2, in the Appendix, 
and the algorithm therein. 
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Fig. 6. The DFTA method facilitates ∆γ tuning without the need for multiple reconstructions. (a) The specimen is virtually divided into 128 blocks, each block 
being 8 (1024/128) sections wide. Theoretically speaking, it is possible to obtain ∆γ for each individual section. (b) An experiment on a mouse pancreas, ∆γ is 
depicted as scattered points for each block and the fitted LLS function is shown as a solid line. (c) Calculated variance of a section reconstructed under different 
∆γ. Shown on the top right corner is the same islet cropped from the different reconstructions, the highest variance was found at ∆γ =2.0 while the presented 
algorithm voted for ∆γ =1.8, which has almost an identical reconstruction. Our proposed automatic DFTA directly pinpoints the best value, thus eliminating the 
need for multiple reconstructions used in the variance-based voting method [24], [25], [22]. 

 
After obtaining the corrected projections (Corrected_Proj), 

the ∆γ can be recalculated, which should ideally be a constant 
zero, but due to numerical variations the mean of the values 
can be used instead to reconstruct the entire volume as shown 
in Fig. 7. The seamlessly rotated projections do not show any 
inconsistencies in the final reconstruction, e.g., ridges, 
geometric artifacts or discontinuities. In fact, the LLS-

Gradient based rotation not only provides a unified ∆γ 
solution for the entire volume but eventually it also increases 
the reconstruction quality as proven by the achieved high 
correlation between opposing projections and the reduced (x, 
y) shifts, see Fig. 8 and the volume rendering depicted in 
Fig.14.

    
 
Fig. 7. Comparison of the A-Values (∆γ) obtained across sections of different specimens before and after applying the LLS-Gradient based correction. The 
rotation is carried out around a new central point P(M/2, Index) ultimately bringing the mean of the ∆γ close to zero. The angle made by the line is obtuse, hence 
its gradient is negative, i.e., rotating the projections clockwise in our MATLAB implementation, with -0.7389=θ  in this example. 
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Fig. 8. Diagrams illustrating the combined effects of the proposed COM-AR and DFTA correction. (a) The plot shows the cross correlation coefficient of 
projections and their horizontally flipped mirrored images. It is evident that the two proposed methods complement each other in the sense that by realization 
of sections (A and B) we achieve a higher coefficient, which is close to perfection. (b) Calculated shifts along y direction in the 2D world between projections 
and their mirrored projections. (c) Calculated shifts along x direction in the 2D world between projections and their mirrored projections, contrast this result 
with the plot in Fig.4d. 
 
 
 

III. RESULTS AND DISCUSSION 

A. COM- AR Positioning 
 
   As previously shown in Fig. 4, having the sample well 
positioned at the AR helps preserve a good correlation of the 
opposing projections and improves the contrast (variance). 
This is illustrated in Fig. A1 which depicts sinograms and 
tomographic reconstructions derived from on- and off-axis of 
rotation scans. As shown in Fig. A3, finding the COM is not 
drastically affected by acquiring out-of-focus images. The test 
displayed in this figure was designed to assess the accuracy of 
the COM calculation method and therefore it should be noted 
that the presented images are synthetically blurred (post-
processing) since OPT scanners typically have a large DOF (in 
our case 15mm at the lowest magnification and 1.5mm at the 
highest magnification). The experiments, herein, indicate that 
the COM-based method is less sensitive to blurriness because 
of the following: 

- The COM works on binary blobs and is not the 
intensity weighted COM. 
- These binary blobs are obtained using a combination 
of two powerful techniques: 

o 2D DWT: The image is initially decomposed into 
high and low frequencies using 2D discrete wavelet 
transformation (2nd level), and 
o EM: The expectation maximization algorithm is then 
invoked to robustly segment out a given specimen (binary 
blob). Note that GFP channel is used for this purpose. EM 
is a well-recognized method in the object segmentation 
field, which is robust against various types of image 
processing filtration. 
 

B. Comparison of DFTA correction against existing 
methods 

 
     As illustrated in Fig. 9, relying on variance-based 
correction may provide a less attractive solution for 

(b) (c) 

(a) Mean=0.9870

         No COM-AR 
         No DFTA 

 COM-AR 
 No DFTA 

No COM-AR 
          DFTA 

COM-AR 
                DFTA 
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determining the ∆γ. Compared to [24], [25] and [22], the 
method described herein yields a faster solution with a higher 
precision. In contrast to the previous mentioned studies, where 
multiple reconstruction iterations are induced for tuning based 
on a vote for the highest score of the variance, the process of 
finding each value in the vector ∆γ is carried out only once 
using the DFTA; see Table I and Fig. 9. In the following 
section (the results presented in table I, II and Fig. 9-11), the 

experiments was designed in such a way that the calculation of 
variance conformed to Walls et al.’s description quoted below.  

“The position of the rotational axis can then be 
determined by reconstructing a series of images with 
differently assumed positions of the rotational axis, 
and calculating the variance of each reconstruction. 
The reconstructed image that has the maximum 
variance is closest to the ideal reconstruction, as it is 
the least blurred.” [22]. 

 
TABLE I 

PERFORMANCE COMPARISION OF VARIANCE-BASED CORRECTIONS AND THE DFTA 
                    

[24], [25] and [22] DFTA 

Variance

Rec (1) 3178.2271 Rec (DFTA) = 7941.0959 
Rec (2) 5115.2187 
Rec (3) 6994.5275 
Rec (4) 7792.6737 
Rec (5) 6990.7245 
Rec (6) 5100.7684 
Rec (7) 3227.8390 
Rec (8) 1902.2256 
Rec (9) 1165.6381 
Rec (10)   831.31030 

Other criteria 
Elapsed Time 3.4966 min 1.3925 min 
Number of Trials 10 1 
Step 0.5 N/A 
Selected Reconstruction Rec (4) Rec (DFTA), Fig. 9 
Selected ∆γ 7.5 -0.5 
Number of possible sections to be 
reconstructed with this value (∆γ) 

1 1024 (entire stack) 

 
 

Optimization using variance instead of SDFT: In the phase of 
image registration, Section II (B), we consider finding 
misalignments by means of SDFT, a technique proposed by 
Guizar-Sicairos et al. (2008). Fig. 10 and 11 compare the 
performance of SDFT against the statistical variance method. 

In Fig. 10, the superimposed circles highlight blocks where the 
variance is a poor descriptor. This imprecision to some extent 
misleads the calculation of the LLS-gradient, which in turn 
affects computing the rotation angle. Table II tabulates this 
effect. 
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Rec(1) ∆γ = 9.0 

 
Rec(2) ∆γ = 8.5 

 
Rec(3) ∆γ = 8.0 

 
Rec(4) ∆γ = 7.5 

 
Rec(5) ∆γ = 7.0 

 
Rec(6) ∆γ = 6.5 

 
Rec(7) ∆γ = 6.0 

 
Rec(8) ∆γ = 5.5 

 
Rec(9) ∆γ = 5.0 

 
Rec(10) ∆γ = 4.5 

 
Rec(Proposed) ∆γ = -0.5 

 
Fig. 9. Visual comparison of variance-based corrections and DFTA corresponding to the data presented in table I. The figure shows reconstructions of a single 
section corresponding to the green line in the projection image (lower right, 8 weeks female C57BL/6 mouse dorsal pancreas) Rec(1-10) are reconstructions 
based on different ∆γ values used as input to vote for the highest variance which eventually has promoted Rec(4). Contrast this with the reconstruction using the 
DFTA Rec(Proposed). Similar data for other specimen types are presented in Fig. S1 and Fig. S3. Note that the elapsed time of the variance-based method was 
3.4966 min, which corresponds to more than half an hour if a given sample is divided into 10 blocks. For DFTA the elapsed time was 1.3925 min in which 1024 
sections were corrected.  

 

  
Fig. 10. Comparison of calculated ∆γ using the statistical variance versus the SDFT algorithm. The superimposed circles highlight blocks where the variance is a 
poor descriptor. Similar results were obtained using other specimens (see supplementary Fig. S5). 

∆γ 
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Fig. 11. Comparison of cross correlation coefficients of the projections and their horizontally flipped mirrored images of the variance-based correction versus 
SDFT. (a) SDFT (green dots) versus CV (the refined variance after supervised suppression of poor values, shown as black stars). (b) Coefficients’ plot of the 
corrected projections using the unaltered variance in Fig. 10.  

 
TABLE II 

PERFORMANCE COMPARISION WHEN USING VARIANCE IN CALCULATING THE X-SHIFT (SECTION IIB) AGAINST SDFT 
Method/Criterion Elapsed Time 

(A block is 8 pixels wide) 
Angle Index 

(xo)** 
Mean Correlation 

(Fig. 11) 
Accuracy 

Variance 17.7543 sec  (128 partitions) -0.8298   817 0.9444 94.4353% 
Refined Variance* (CV) 17.7543 sec  (128 partitions) -0.3835 1215 0.9868 98.6770%  
Single-step DFT (SDFT)   4.8225 sec  (128 partitions) -0.3456 1278 0.9870 98.6958% 

                   (*)  The refined variance is the variance vector with poor estimators, shown within circles in Fig. 10, being eliminated from the calculation of the line 
                     equation and thereafter the angle. (**) see the Algorithm pseudo-code in the Appendix. 
 
 

C. Tomographic Reconstruction Results 
 
A phantom was prepared using a glass capillary with known 

inner diameter (the diameter of the tube was measured 
beforehand using high-resolution microscopy). The objective 

of this phantom, of known properties, was to measure the 
amount of shape deformation of the reconstructed data as 
compared to the ground truth. Two reconstructions were 
generated from a single OPT scan, one implementing the 
DFTA and another using the variance-based, see Fig. 12.

 
 

 
Var = 16770.8576 

Rec_Var(1) ∆γ = 2.5 

 
Var = 18574.7645 

Rec_Var (2) ∆γ = 2.0 

 
Var = 16563.6176 

Rec_Var (3) ∆γ = 1.5 

 
Var = 13040.1149 

Rec_Var (4) ∆γ = 1.0 

 
Var = 9971.0612 

Rec_Var (5) ∆γ = 0.5 

 
Var = 24700.9713 

    Rec_Proposed ∆γ = 0.5 

 

 
 

 
 

Fig. 12. Visual comparison of variance-based corrections and DFTA carried out on a glass capillary phantom (inner diameter 700µm ±10µm). Rec_Var (1-5) 
shows the different reconstructions required to vote for the best reconstruction. The chosen reconstruction was the one with highest variance score, Rec_Var(2). 
Lower right shows a projection view of the glass tube before reconstruction. The green line indicates the level at which the shown sections were generated. Note 
that Rec_Proposed shown above was obtained using a single reconstruction only. 
 
 

Fig. 13a reaffirms the notion that the uncorrected ∆γ can be 
described as a strictly decreasing monotonic function. In order 

to quantify the improvements that this work brings about, we 
recalculated the diameter after scanning and reconstruction, 

(b) (a) 



IEEE TMI‐2011‐0360 

i.e., after the CB-FBP and dynamic range settings were 
applied. As illustrated in Fig. 13a, the DFTA clearly 
increments the quality of the reconstructed data. Fig. 13b 
illustrates the calculated diameter using both the proposed and 

the variance-based reconstructions; it is evident that the 
diameter after ∆γ correction is more stable across all sections. 
The standard deviation (std) of the variance-based method was 
19.2977 while for DFTA it was 1.9451. 

 
Fig. 13. Comparison of the variance-based method and the DFTA when applied to a glass capillary phantom with known diameter. (a) ∆γ before and after 
correction using the DFTA.  (b) Calculation of the inner circle diameter,(broken line in (c)) using the variance-based method (red line) and DFTA (blue line). 
Note that the calculated diameter using DFTA display less deviation from the ground truth compared to the variance-based method. (c) Tomographic section of 
the glass capillary. The red circle outlines the inner circumference of the tube and the broken line corresponds to its diameter.  

 
To qualitatively assess the performance of the developed 

approach in the realm of real specimens applications, mouse 
pancreas labeled for insulin (outlining the Islets of 
Langerhans), mouse liver stained for smooth muscle alpha-
actin (larger blood vessels) and the mouse embryonic 
gastrointestinal tract stained for E-cadherin (gastrointestinal 
epithelium) was subjected to the variance and the developed 
algorithms respectively (see Fig. 14 and Figs. S2 and S4). For 

all analyzed specimen the unitary step of rotation was set to 
0.45o and the projection images were exported with a 
resolution of (1024x1024) in 16-bit TIF format. Hereby, the 
data generated using DFTA consistently produced volumetric 
renderings with enhanced quality as compared to the 
statistical-variance processed data (compare Figs. 14a and 
14b). 

 
 

(a) 

(c) 

(b) 

∆γ  
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Fig.14. The proposed algorithms enhance image quality when applied to biological specimen. (a) and (b), Volume rendering of the specimen shown in Fig. 10 
(pancreas labeled for insulin) using the variance-based approach (a) and the proposed approach (b). The insulin-labeled islet β-cell volumes have been pseudo-
colored in red to enhance visualization and to follow the tradition in displaying specimen’s in the literature. The original data, however, is monochrome. This 
note holds true also for the accompanying multimedia contents (supplementary videos I and II). (a) Frontal and top views of a reconstructed scan (volume-
rendering) with the ∆γ derived from the statistical variance based on one section, see supplementary video II. (b) The same specimen scanned and reconstructed 
using the proposed methods (COM-AR positioning and DFTA), see supplementary video I. Due to the degree of synchronization of two opposing projections, 
the dynamic range during the reconstruction was set differently between the specimens. Similar comparisons using other specimen types are shown in Fig. S2 
(videos III, IV) and Fig. S4 (videos V, VI). 
 
 

IV. CONCLUSION 

 
The term artifact, in medical imaging, characterizes every 
deviation of the image from the exact reproduction of the 
anatomical and tomographic characteristics of the area under 
examination [28]. Scan projections are always prone to 
elements, which diminish the signal-to-noise ratio as not all 
biological samples present significant absorption contrast [29]. 
The generation of high quality 3D reconstructions is a vital 
element in the field of molecular medicine. In this report we 
present algorithms that provide fast and accurate means for 
positioning specimen to be scanned by OPT on the correct AR 
and for determination and correction of post-acquisition 
alignment values before the reconstruction process. 
Obviously, the proposed DFTA algorithm inherits the 

shortcomings of the cross-correlation algorithm in the sense 
that the sample has to display sufficient features to arrive at a 
robust alignment. Still, as demonstrated on a variety of 
specimens, these algorithms contribute to reduce subjective 
interference in the data acquisition process and to increase 
acquisition speed and data quality for essentially any form of 
OPT based assessments conducted on biomedical specimens. 
The proposed approaches are further likely to impact on the 
possibilities to utilize OPT as a tool not only for spatial 
assessments but also for quantitative assessments. This comes 
clear when considering that typically a spatial assessment of, 
e.g., a proteins distribution pattern, is less dependent on small 
deviations in shape or object size then is a volumetric 
assessment of the same specimen. In the latter case, even a 
minor artifact induces changes, e.g., the radius of a spherical 

(a) (b) 
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object will cause a dramatic increase/decrease in the object’s 
volume, an effect that will be accentuated with objects of 
smaller sizes. Hence, in order to perform statistically sound 
OPT assessments involving larger groups of specimen, e.g., 
when assessing deviations in islet β-cell mass in diabetes 
research, a fast and reliable approach to an accurate 
reconstruction is essential. In this respect, the algorithms 
demonstrated in this work can be the foundation material for a 
wide range of applications. 
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Appendix 

 

                               
 
 

                                                  
Fig. A1. The figure shows cross section sinograms (bottom) and their respective 2D slice reconstructions (top) of a pancreas. (a) Sinogram and reconstruction of 
a slice from a scan using the COM-AR method discussed in Section (II A) and (b) sinogram and reconstruction of a slice on the same level using an off-center 
scan. 
 
Let the x-coordinate index of the image new rotation center be denoted as xo and let MxN be the image dimensions.  

Padding Algorithm Pseudo-code: Rotation around the new centre (M/2, xo) 
New_Rotation_Center_Row=N-xo; 
Array_Height= |(N-(2*New_Rotation_Center_Row))|; 
Offset_Blank= size (M, Array_Height); 
if (New_Rotation_Center_Row >(N/2)) 
      Padded_image= Pad_top(Offset_Blank,Original_image); 
      Proj= rotate_crop(Padded_image, θ); 
      Corrected_Proj= Proj (1 M,(Array_Height+1) N); //cropping out the padded space 
   elseif New_Rotation_Center_Row <(N/2) 
      Padded_image= Pad_bottom(Original_image,Offset_Blank); 
      Proj= rotate_crop(Padded_image, θ); 
      Corrected_Proj= Proj(1 M,1 N); //cropping out the added space 
   else 
      // if xo happens to be in the centre no padding is needed 
      Corrected_Proj= rotate_crop(Original_image, θ); 
endif 
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Fig. A2. The above padding algorithm implemented on a pancreatic specimen. (Left) the original projection image with the initial rotation central point and the 
point where the ∆γ is closest to zero being superimposed. (Right) the same projection padded to centralize the rotation around the new found point. 
 

 
Fig. A3. Blurriness has a negligible effect on the performance of the proposed algorithms. The figure displays a projection view (GFP channel, size 512x512) of 
a pancreas with varying degrees of blurriness. The bracketed values correspond to the radius used in a circular averaging filter (pillbox) within a square block of 
size (2*radius+1), the 2D variance value and COM x-position (xo), respectively. The bottom right image is the original (non-blurred) image. The blurring effect 
affects the precision of the COM-AR by less than half a pixel in the worst-case scenario, i.e., xo=254.3567 (blurred image with radius 5) and xo=254.2107 (non-
blurred). When re-calculating the angle, index and correlation value using the most blurred image in the current example the derived parameters were: θ = -
0.3572431, Index= 1254 and the correlation between the corrected pair=0.9816. For the non-blurred image the corresponding values were: θ = -0.3455803, 
Index= 1278 and the correlation between the corrected pair = 0.9877. 
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Fig.S1. Visual comparison of variance-based corrections and the DFTA method on a liver specimen. The figure shows reconstructions of a single section from a 8 weeks female C57BL/6 mouse left lateral liver lobe, labelled with 
Cy3-conjugated anti-alpha smooth muscle actin antibodies which detects major blood vessels, using variance based correction (Rec(1-10)) and the DFTA method (Rec(Proposed)). Rec(1-10) correspond to reconstructions based on 
different ∆γ values used as input to vote for the highest variance which eventually promoted Rec(7). Contrast this with the reconstruction using the proposed DFTA algorithm, Rec(Proposed). The proposed reconstruction was 
performed after ∆γ correction using Angle = - 0.3852 and Index = 673. The reconstructed sections correspond to the green line in the projection image. 
 
 
 
 



 

  

 
Fig.S2. The proposed algorithms enhance image quality when applied to biological specimen. 3D volume rendering of the specimen seen in Fig.S1 using the proposed method (a, a' and Video III) and the variance -based method (b, 
b' and Video IV), respectively. (a' ) and (b'), close up of framed area in (a) and (b). In contrast to the variance-based method the proposed method produce images in which the reconstructed features (the outline of the blood vessels) 
are better preserved. Scale bar in a' and b' is 1mm. 
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Fig.S3. Visual comparison of variance-based corrections and the DFTA method on a portion of the mouse gastrointestinal tract. The figure shows reconstructions of a C57BL/6 mouse embryonic day 17.5 gastro intestinal tract, 
labelled with E-cadherin antibodies which marks the gastrointestinal epithelium, using variance based correction (Rec(1-6)) and the DFTA method (Rec(Proposed)). Rec(1-6) correspond to reconstructions based on different ∆γ 
values used as input to vote for the highest variance which eventually promoted Rec(4). Contrast this with the reconstruction using the proposed DFTA algorithm, Rec(Proposed). The proposed reconstruction was performed after 
∆γ correction using Angle =-0.240317  and Index = 3480. The reconstructed sections correspond to the green line in the projection image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 

 

 
Fig.S4. The proposed algorithms enhance image quality when applied to biological specimen. 3D volume rendering of the specimen seen in Fig. S3 using the proposed method (a, a' and Video V) and the variance -based method (b, 
b' and Video VI), respectively. (a', a'') and (b', b''), close up of framed areas in (a) and (b). In contrast to the variance-based method the proposed method produce images in which the reconstructed features  are better preserved, 
compare the outline of the branching pancreatic epthelium (a' versus b') and the crypts of the developing duodenum (a'' versus b''). Scale bar in a', a'', b' and b'' is 200 µm. 
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Fig. S5. Comparison of the calculated ∆γ values using the statistical variance versus the SDFT algorithm on the samples shown in Figs. S2 and S4. (a) A plot of ∆γ values using both methods derived from the liver sample shown in 
Fig. S2, and (b) a plot of ∆γ values using both methods derived from the mouse gastrointestinal tract sample shown in Fig. S4. The SDFT method yields a noticeable linearity across all sections.  This linearity is crucial to find the 
proper parameters, i.e., the Angle and Index parameters, (see the discussion in relation to Fig. 10 in the manuscript). 
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