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Abstract: We demonstrate a technique to improve structural data obtained 
from Optical Projection Tomography (OPT) using Image Fusion (IF) and 
contrast normalization. This enables the visualization of molecular 
expression patterns in biological specimens with highly variable contrast 
values. In the approach, termed IF-OPT, different exposures are fused by 
assigning weighted contrasts to each. When applied to projection images 
from mouse organs and digital phantoms our results demonstrate the 
capability of IF-OPT to reveal high and low signal intensity details in 
challenging specimens. We further provide measurements to highlight the 
benefits of the new algorithm in comparison to other similar methods. 
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1. Introduction  

OPT is a technique for highly specific three-dimensional (3D) imaging of gene and protein 
expression patterns in tissue specimens [1]. By virtue of its capacity to generate high 
resolution images of specimens on a scale that has been difficult to cover by other imaging 
modalities, the use of the technology is rapidly expanding in diverse research fields such as 
developmental biology, diabetes research, pathology and many more. However, in the course 
of 3D rendering of images generated by OPT, structures or objects spanning a wide range of 
signal intensities commonly represent specific challenges for the process of image generation. 
Examples of such structures include vascular or epithelial branches. For example, in OPT 
assessments of the liver, peripheral blood vessels typically display very low signal intensities 
and may be difficult to distinguish from the surrounding background. In contrast, vessels in 
other areas of the organ (such as the portal vein) display very high signal intensities. In order 
to visualize the peripheral vessels, a longer exposure can be acquired. However, this may lead 
to over-saturation of other areas (which may also occur when attempting to regulate the 
dynamic range for the reconstruction). Conversely, optimized exposures of high intensity 
elements may lead to under representation of low signal intensity areas. Hence, in order to 
reliably arrive at an adequate qualitative 3D rendering encompassing all labeled structures in 
this type of challenging specimen, scanned projections must in many cases undergo extensive 
post-acquisition image processing. 

Image enhancement is a process applied to digital images that makes otherwise invisible 
features visible. Generally, the success rate of image enhancement is subjective, i.e. task 
dependent, but it can be measured by an objective function such as how well the signal is 
detected in a scan (our principle focus in this study). Hence, enhancement techniques are most 
commonly problem oriented [2]. Thus, a functional method to enhance OPT data would be 
one that yields a better signal-to-noise ratio and a better preservation of morphology. Image 
fusion is the process of combining two or more registered images acquired under different 
conditions, or via different detection methods, in order to produce a more descriptive scene. 
The resulting output would be more suitable for the human visual system (HVS) or machine 
vision and aid in downstream image processing and analysis tasks than any of the individual 
input signals [3]. 

In this report we propose a method to overcome the shortcomings of OPT for imaging 
specimens containing widely differing contrast elements by using image fusion of multi-
exposure projections, thereby producing projections that are inherently unbiased towards 
exposure variations. This fusion approach not only facilitates the visualization of structures 
with both strong and weak signal intensities. It may also aid in tuning the dynamic range 
during image reconstruction. 

For exposure manipulation of certain specimens, there is a trade-off between capturing 
weak signals and revealing more detail. Commonly, longer exposure times allow for the 
detection of weak signals while a shorter exposure may reveal more detail of a high intensity 
area. The concept of image fusion is widely used in photography, remote sensing, military 
imaging equipment (comprising near-infrared night vision) etc. [4]. In biomedical imaging, 
there is today a tendency towards multimodality (multi-sensor) fusion, e.g., MRI with CT scan 
data [5], PET with CT [6], and MRI with PET [7], which eventually helps in confirming 
diseases or outlining treatment procedures. In parallel to the work described herein, attempts 
have been made to implement high dynamic range (HDR) on OPT [8]. However, there is to 
the best of our knowledge no research done to-date at the level of uni-modal signal 
enhancement of biomedical scans through fusion of multi-exposure OPT projections of 
specimens on the cm scale. The possibility to simultaneously visualize areas of both high and 
low intensity, in a single specimen, has the potential to open up several research avenues for 
OPT imaging.  
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1.1 Related work 

Image fusion techniques can be classified into two main groups in both spatial and frequency 
domains, pixel based fusion and feature based fusion (segmented blobs). The terms HDR 
imaging and image fusion are sometimes used incorrectly to describe the same process. This 
confusion can be eradicated if we see the HDR process as the one that tries to retrieve a 
camera response function from a given set of different exposures in such a way that the 
resulting intensity values violate any image format as they exceed the allowable ranges, thus 
the name “high dynamic range”. This is the reason why HDR images are usually exported to 
non-standard image formats and are converted to low dynamic range formats for display. In 
contrast, image fusion does not require the retrieval of camera response functions and does not 
involve exposure parameters in the computation of the final fused image. Therefore, it does 
not violate the image format (i.e. the intensity values are within the image type range).  

Vavilin et al. propose an exposure blending scheme whereby a selective procedure was 
applied [9]. Their method yielded better results than conventional straightforward averaging. 
However, this technique is less suitable when the exposure is varied between frames [10]. 
Moreover, similar techniques can lead to a reduced contrast and attenuation of salient features 
[11, 12]. In a related study, Goshtasby divided images into non-overlapping blocks and 
measured entropy to select the best representative blocks across all available exposures and 
determined the blending function using a gradient-ascent algorithm [13]. Daneshvar and 
Ghassemian took advantage of the HIS (Hue, Intensity, Saturation) color space of multi-
spectral MRI images to fuse the intensity part with the grayscale images of PET [7]. This 
technique, however, often suffers from spectral degradation [12]. Another technique applies a 
pulse coupled neural network (PCNN) for multi-channel fusion [14, 15]. In a method 
analogous to this, a feature-based image fusion using independent component analysis (ICA) 
and topographic independent component analysis bases was introduced [16]. These two bases 
are trained and the estimated transform is used for fusion of similar content images. A 
problem with ICA and PCNN is that their results and performances depend heavily on the size 
and diversity of the training data. This impediment for ICA and PCNN is also observed 
independently in another study [12].  

Mertens et al. generated normalized weighted maps comprising contrast, saturation and 
well-exposedness weights of each of the exposures where the conventional averaging was 
carried out in a pyramid decomposition fashion [17]. Pyramid decomposition has also been 
described by others (e.g. [18, 19]). In a similar approach, Wavelet Decomposition (DWT) was 
introduced to image fusion at about the same time [20, 21]. Lewis et al. and Nikolov et al. 
were also in favor of using DWT [22, 23]. Nikolov showed that working in the wavelet 
domain gives a more desirable outcome in terms of fusion quality. Pyramid based fusion on 
the other hand suffers from blockiness, over-completeness of transform coefficients and noise 
interference compared to DWT [11, 12]. Empirical mode decomposition (EMD) is another 
method that has been proposed in the context of image fusion [24, 25]. An advantageous 
feature of EMD is its ability to adaptively separate spatial frequencies, but since it is a data-
driven method there is no guarantee that decomposition of multiple sources match in terms of 
number or frequency [24].  

As for HDR imaging, retrieving camera properties can also be used in the context of 
image fusion. Camera response functions are normally not disclosed by camera manufacturers 
[10]. Nevertheless, Debevec and Malik propose recovering the camera response function with 
which multiple exposures can be fused into a single high dynamic range radiance map [26]. 
The benefit sought after in recovering the response function is far less of an issue for OPT 
data as the scanning environment, i.e. within the OPT scanner setup, is well controlled. Hence, 
rather than delving into the computational complexity of HDR, low dynamic range fusion 
appears sufficient in the case of OPT. Moreover, the HDR method requires prior knowledge 
of the exposure durations (scalar variables) of each of the images.  
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2. Materials and methods 

2.1 Specimen preparation and OPT scanning 

Mouse liver tissue (lobus sinister lateralis) was obtained from adult C57BL/6 mice (Taconic) 
and kidneys were derived from neonatal wild-type and Wnt4 null mutant mice, respectively 
[27]. Both tissue types were immunohistochemically processed and prepared for OPT 
scanning essentially as described [28]. Smooth muscle expressing vessels of the liver were 
labeled with Cy3-conjugated anti-smooth muscle α-actin antibodies (Sigma). The ureteric 
branches of developing kidney were labeled with antibodies against Troma-I (developed by P. 
Brulet and R. Kemler and obtained from the Developmental Studies Hybridoma Bank 
developed under the auspices of the NICHD and maintained by The University of Iowa, 
Department of Biology, Iowa City, IA 52242) and visualized with an Alexa594 conjugated 
secondary antibody (Molecular Probes). All animal experimentation was conducted in 
consistence with international, national and institutional laws and guidelines at Umeå 
University and Oulu University, respectively. The specimens were scanned using the 
Bioptonics 3001 OPT scanner (Bioptonics) and tomographic projections were reconstructed 
using the NRecon software (SkyScan) as described previously [29]. The data in Fig. 9 was 
acquired using the original setup for OPT scanning [1] fitted with an Andor iKon-M 
DU934N-BV camera (Andor Technology) [30]. Iso-surface and volume renderings of the 
analyzed specimen was performed using the Imaris (v7.2.3, Bitplane, Zurich, Switzerland) or 
Drishti (v2.2, Australian National University, ANUSF VizLab, Canberra, ACT, Australia) 
software packages. 

In order to perform IF-OPT, three exposures were acquired in the following order: 
• Low (I0): signal in high intensity areas never become saturated, 
• Medium (I1): normal (see Fig. 1) single exposure time setting, and  
• High (I2): weakest specific signal clearly visible. 

To set proper exposure times, a search was made for the most saturated area on the 
specimen, rotating the sample where necessary. Once located, a profile histogram was plotted 
over the sample providing an instant indication of any saturation (commercial Bioptonics 
3001 OPT scanners come with a measurement tool to guide the process of exposure tuning). 
The three exposures (I0, I1, I2) were then acquired, guided by this plot, as shown in Fig. 1. 
Hereby, it should be noted that the shift drawback, which is caused by mis-registration (see 
e.g. [31]), is not essentially a problem in the OPT setup since it does not involve processing of 
data from different modalities. The acquired exposures are of the same mounted specimen and 
quasi-perfect alignment is guaranteed [30].  

Scanner settings applied to all samples in this study, using the Bioptonics 3001 scanner, 
were: rotation degree 0.45, resolution 1024 x 1024 pixels, pixel sizes were 18µm for liver 
lobes and 3.3µm for the kidney. For Fig. 9 the scanner settings were: rotation degree 0.9, 
resolution 1024 x 1024 pixels and pixel size 29.87µm. The listed pixel sizes denote the value 
that a pixel corresponds to in the respective projection views. Acquired data were processed as 
described [29] in addition to the IF-OPT method discussed hereafter. 
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Fig. 1. Depiction of the principle way to set up the three different exposures for IF-OPT (liver 
specimen). This is for mere illustration; the actual scanner displays one plot at a time. Initially, 
the specimen is rotated to locate the brightest area where the scanner displays a saturation plot. 
For the “normal” exposure the plot should be close to the over saturation level but not 
exceeding it whereas the high exposure should allow for certain parts of the specimen to be 
over-saturated (the purpose here is to catch all weak signals at the expense of over-saturating 
other areas) and finally the low exposure should be at or below the middle range. Note, these 
superimposed plots form a general guideline and saturation may vary depending on the 
examined specimen and the level of staining. 

2.2 Proposed method (IF-OPT) 

The current study proposes a contrast limited adaptive histogram equalization (CLAHE)-
driven image fusion method since first order statistics manipulation, i.e. histogram 
equalization, can help in contrast enhancement of the scanned signal structure. The net effect 
will be contrast-enhanced images in the sense that the intensity levels span a wider range in 
the intensity scale and exhibit an almost uniform probability density function (PDF).  

It is well known that global histogram equalization can give unfavorable results knowing 
that weakly stained objects are statistically undistinguishable globally but tend to be more 
visible locally [2]. This fact suggests using an adaptive histogram equalization approach, 
which could cater for local statistics and thus overcoming the limitations of standard 
histogram equalization. CLAHE is a very powerful algorithm, which encapsulates a local 
operation based on a user-defined window. It comes as an improvement to Adaptive 
Histogram Equalization (AHE) and it has previously been applied to medical imaging [32-34]. 
The algorithm is initiated by dividing the image into non-overlapping blocks; the contrast is 
then estimated in each block and constrained by limiting the slope of the cumulative 
distribution function (CDF) in order to avoid amplification of noise in homogeneous areas, 
hence the name “contrast-limited”. Artificially induced boundaries, e.g. blocking effects, are 
eliminated by combining neighboring tiles using bilinear interpolation, e.g. deblocking (see 
Fig. 2). 

Let, I0 I1 and I2 be the underexposed, normalized (reference) and overexposed images 
respectively. Then a compound CLAHE adaptation is imposed according to:  
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    Î = ω i ⋅ h I iC( )
i=0

2

∑ .      (1)                                                 

where h I i( ) = Imax

iC − Imin

iC[ ] ⋅ ρ f( ) + Imin

iC , Î  is the weighted average of the input data after 
applying the first CLAHE transform, IC denotes the complement image of I (Note, the 
Bioptonics 3001 OPT scanner exports the projection data inverted, i.e., where the background 
is white, which necessitates re-inverting them to match the display in Fig. 1 prior to applying 
the IF-OPT), ( )fρ  represents the CDF (cumulative distribution function) denoted by 

ρ f( ) = ρ X ≤ x( ) = f (t )dt
0

x

∫   where f is the probability density function approximated by 

the intensity histogram, X is a variate and x is a number (i.e., the observed intensity value). 
In Eq. 1,ω i

 are weighting coefficients and these values are optimized using a standard 
eigen-decomposition method (eig). Let A, B, C be treated as feature vectors corresponding to 
the 2D input matrices h I i( ) , i ∈ 0,1,2{ } ,then we have the decomposition 

Vλ[ ] = eig cov A, B,C[ ]( )  and the weights are then derived from ω = Vindex / Vindex∑( ), 
where index is the ith column in the eigenvectors (V) corresponding to λmax (dominant 
eigenvalue) entry in λ, cov[.] is the 3x3 covariance matrix. The obtained weights are assigned 
in the following order: 
h I 0( ) � ω Average , h I 1( ) � ω Max , h I 2( ) � ω Min . 

That is to say, h I 0( )  is multiplied by the average value in ω, h I 1( )  –the reference 

projection- is multiplied by the maximum value in ω and h I 2( )  is multiplied by the 

minimum value in ω. In the case of the liver in Fig. 6 the ω i , i ∈ 0,1, 2{ }  are calculated to: 
0.29, 0.57, 0.14, respectively. 

The histogram of the fused image, at this stage, approximately matches a histogram 
specified by a uniform distribution [35]. Hereafter, the resulting distribution needs to be re-
modeled in order to squeeze the histogram and shift it toward the mean intensity, i.e. 127.5 for 
8-bit images, forming a bell-like shape [35]: 

   h Î( ) = Îmin + 2δ 2 ln
1

1− ρ f̂( )
⎛
⎝⎜

⎞
⎠⎟

.    (2)                                                  

where, δ is a contrast regulator parameter. It is a nonnegative real scalar specifying a 
distribution parameter and is equal to 0.4 in our case [35]. See the effect of these histogram 
manipulations on histograms in Fig. 3, and on scan data in Fig. 6. 
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Fig. 2. A generic illustration of the mechanics underlying CLAHE. (Top) showing the two 
major intensity transformation involved, T1, a local adaptive histogram equalization with a 
clip-limit (will be discussed later) and T2, a bilinear interpolation which removes the blocking 
effect by interpolating between adjacent blocks’ boundaries, and (bottom) showing the 
interaction formed by CLAHE with two different tile sizes as in Eqs. 1-2. 

In our experiments with raw scan projection images of size 1024 ×1024[ ] 210 × 210[ ] , 

different tile sizes were utilized, t = 2 j × 2 j[ ], j = 2,..., 8 . For a given j the image is thus 

decomposed into 210− j × 210− j[ ] non-overlapping pixel tiles.  
The optimal size of a tile depends on the input image (i.e. how much of the image area 

that is occupied by the investigated sample and the signal to noise ratio) and is likely to be 
application oriented. Owing to our extensive experimentations on OPT data we suggest, that 
as long as the sample is large enough to occupy most of the FOV the optimal size of a tile for 
the output of the scanner is 24 × 24[ ] . Therefore the image was blocked into 64 × 64[ ] tiles 
in Eq. (2) (the outer processing layer) and the block size is reduced by half in Eq. (1) (the 
inner processing layer) resulting in the images being blocked into 32 × 32[ ] tiles.  

If the sample is considerably smaller than the FOV the tile size (t) has to be adjusted 
according to the physical size of the sample within the projected image. It is observed that 
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choosing higher values for the tiles, e.g., when j=7, can cause an effect similar to a 
phenomenon known as “blooming” which occurs when a charge or light at highly saturated 
sites on the imaging surface spills over and affects values at neighboring sites [26]. 

The pixel intensities in a block are then calculated and described by the CDF for that 
block. To limit the contrast and to avoid saturation and enhancement of background noise, a 
clip limit Eq. (3) is set for the histogram that constrains the permissible contrast [36],  

ClipLimit =
ϕ

256
⎡
⎢⎢

⎤
⎥⎥
+ 0.01 ⋅ ϕ −

ϕ

256
⎡
⎢⎢

⎤
⎥⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

.     (3) 

where, ⎡ ⎤.  denotes rounding the value to the nearest integer greater than or equal to that value 
and [].  denotes rounding the value to the nearest integer. The value of 0.01 is the default. If 
this value is changed to 1, the operation would result in the standard AHE, φ is derived from 
the product of the block size and represents the number of pixels per tile. For example, if an 
image I with the size of 1024 × 1024[ ], and the number of tiles (t) as discussed above is 

16 × 16[ ], then ϕ = 1024 /16( ) ⋅ 1024 / 16( ) = 64 2 = 4096  pixels, finally, the value of 256 in 
the above equation denotes the number of bins. Artificially induced boundaries are eliminated 
by combining the neighboring tiles using bilinear interpolation. 

At present, it is not feasible for this approach to run in real-time, due to the requirement 
for three separate exposures. Therefore, the process is implemented as an off-line projection 
enhancement. It is possible to speed up this process, although not implemented here by 
operating in the wavelet decomposition domain. This approach must take into account that 
CLAHE is not designed and optimized to equalize highly compressed coefficients. Further 
more, one should also be aware that it may result in sacrificed data quality due to the fact that 
the wavelet approximates data using square wave functions (Haar) or polynomial functions 
(Daubchies) [37]. 

After applying IF-OPT on the raw scanned data the conventional filtered back-projection 
(FBP) can be carried out as normal. In our case, the OPT scan’s unitary step of rotation was 
set to 0.45°. Note that in the implementation of the filtered back-projection process, the 
background is automatically estimated and a threshold is set accordingly. As so long as the 
SNR is high the actual intensity of the background can be well estimated. It is highly unlikely 
that noise spots overlap in all 360° projections, since this would result in ring artifacts, which 
are not present in our processed samples.  
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Fig. 3. A simplified illustration of the effect of the compound histogram equalization and 
redistribution on three different exposures (16-bit) corresponding to the images shown in Fig. 
6. Intensity histograms of the three different exposures are depicted, namely, (a) I0 (low 
exposure, fine details are not well captured), (b) I1 (best adjusted exposure, a mild improvement 
in capturing the fine details but at the expense of an equivalent oversaturation)  and (c) I2 (high 
exposure, a great improvement in capturing the details however more pixels are oversaturated), 
(d) the histogram after applying Eq. 1 on the fused projection of the above three exposures, and 
(e) after applying Eq. 2 on the result of Eq. 1. As can be seen from the final result in Fig. 6, the 
main advantages have been achieved; the process exposes very fine details without being 
trapped in the oversaturated area.  

3. Results 

3.1 Performance of IF-OPT on a digital phantom 

Projection images of a 3D digital phantom were synthetically constructed to assess the 
performance of the algorithm. The digital phantom consisted of a hollow rotational symmetric 
tube-structure with a gradient intensity, with a low intensity at one end and high intensity at 
the other end. By simulating quantification into different exposures, making sure to include 
over saturation and simulated noise (Poisson), three different sets of projection images of the 
tube was generated, see Figs. 4(a)-(c). The low exposure image was chosen so as to make sure 
that the low-intensity part of the tube was captured with a reasonable contrast. The high 
exposure image was generated in the same way but with a focus on the high intensity of the 
tube. In supplementary Figs. 1(d)-(f), the areas of over-saturation are shown.  

As can be seen in Fig. 4(d), some of the noise is carried through to the fused image but 
due to the fact that the noise is uncorrelated between projections it will not survive the 
tomographic reconstruction process. Thus, the reconstructed volume using the IF-OPT 
approach (Fig. 4(f)) is virtually noise free and results in better preservation of object detail 
(compare Figs. 4(e) and 4(f)).  
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Fig. 4. Structural analysis of a digital phantom. (a)-(d), Frames from the digital phantom 
showing three different exposures, (low (a), normal (b) and high (c)) together with the proposed 
fusion method (d). The “screw-like” topology of the phantom was intentionally introduced to 
help contrast the efficiency of the proposed technique with the finest tuned exposure in terms of 
object structure enhancement. Note that the diameter of the tube and the “ring structures” were 
made constant across the length of the object. (e) and (f) depict 3D rendering of reconstructions 
of (b) and (d). The proposed fusion reveals low intensity regions (without over-saturating other 
areas) and aids in shape preservation. For example, in the IF-OPT reconstruction the diameter 
of the tubes is more consistent across its length (black arrows in (e) and (f)). Moreover, the ring 
structures at the bottom of the phantom are deformed (open arrowheads in (e) and (f)) and the 
uppermost ring structures are essentially absent after 3D reconstruction (black arrowheads in 
(e) and (f)). “Oversaturated” areas in (a) -(c) are shown in Fig. 5. 
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Fig. 5. Depiction of over-saturated areas in the digital phantom shown in Fig. 4(a)-(c), 
Individual projection views corresponding to low (a), normal (b) and high (c) exposure. (d)-(e), 
Over-saturated areas in the respective projection view.  

3.2 Revealing vascular branching morphology in the liver 

As far as OPT is concerned, a mouse liver lobe is regarded as a large specimen to fit into the 
scanner’s field of view. The vascular tree of the liver (in our case labeled for smooth muscle 
α-actin) typically displays a high to low signal intensity gradient that makes exposure tuning 
challenging for OPT imaging. The effect of IF-OPT when applied to this problematic 
specimen is shown in Fig. 6. Three exposures are acquired with I1 being the best-balanced 
exposure (from hereafter referred to as “normal”) obtained by a trained biologist/OPT-
operator. Obviously, that comes at the cost of over-saturation of certain areas, i.e. in the 
venous entry area (arrowhead in Fig. 6(b)). This carries another challenge when performing 
reconstruction of tomographic sections; adjustments of the dynamic range can be considerably 
biased towards these regions affecting the low signal intensity areas (see Fig. 6(a)). Figure. 
6(d) is the result of applying the proposed algorithm on the three exposures, and Figs. 6(e)-
6(f) illustrate a representative 3D rendering of both the normal and IF-OPT reconstructions. 
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Fig. 6. Comparative assessment of the effect of IF-OPT versus normal single exposure settings. 
(a)-(c), Different exposures of a projection at angle 0° of an Adult C57BL/6 (Taconic) left 
lateral liver lobe (lobus sinister lateralis) labeled for smooth muscle α-actin and (d), the result 
of applying the proposed IF-OPT method. (a) Depicts the first projection of the low (500ms) 
single-exposure scan, (b) the first projection of the normal (1500ms) single-exposure, (c) the 
first projection of the high (2500ms) single-exposure, and (d) the first projection of the IF-OPT 
fused-exposures. A major gain in signal capture is noticeable when using IF-OPT. (d), (e) 3D 
reconstruction of the normal exposure (e) and IF-OPT (f) projection data shown in (a)-(d). The 
clear perceptual advantage of IF-OPT pinpoints the usefulness of the technique in weak signal 
enhancement, structure highlights and intensity regulation across the specimen (which also 
facilitates thresholding during reconstruction). Arrowhead in (b) indicates the oversaturated 
area. Scalebar in (a) corresponds to 1.8mm in (a)–(f).  

3.3 Exposing ureteric branching patterns in the kidney 
Several organs, including the lungs, pancreas, salivary glands and the kidneys, display 
complex epithelial branching patterns. Disturbed epithelial branching in a number of organs, 
which may be caused by genetic factors or exposure to certain drugs during development, is 
associated with a number of disease conditions. A good example is the kidney, which is also 
widely used as a model system to study general mechanisms behind epithelial branching and 
epithelial-mesenchymal interactions in developmental biology. During development of this 
organ, reciprocal interaction between the nephrogenic mesenchyme and the ureteric bud leads 
to the formation of the branched ureteric tree, the collecting duct and the ureter of the mature 
kidney.  
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Similar to the vascular network of the liver, the kidney impose challenges to the OPT 
imaging process, and to 3D imaging in general. To test whether it is possible to better resolve 
the ureteric tree branching patterns in the kidney by the developed approach, IF-OPT was 
tested against normal single exposure OPT scans of the neonatal kidney from wild-type (wt) 
and Wnt4-null mutant mice in which the branched epithelium was labeled with Troma-I 
antibodies that recognize a cytokeratin antigen. The Wnt4 mutants were chosen in part 
because they display dramatic differences in signal intensities between the proximal and more 
distal parts of the branching ureteric tree, which normally makes detailed OPT imaging of the 
entire epithelium challenging, and also to compare the ureteric bud branching pattern to the 
wild type. As can be deduced from the resulting image data, IF-OPT considerably facilitates 
imaging of the entire epithelial plexus in kidneys from Wnt4 null mice (compare Figs. 7(a), 
with 7(e) and 7(b)-7(d) with 7(f) respectively) and wt litter mates (7(g) and 7(h)). 

 
Fig. 7. IF-OPT overcomes the trade off in threshold settings for comparative analysis of the 
ureteric kidney tree in a neonatal Wnt4 null mouse (a)-(f) and its wild type littermate (g), (h). 
(a)and (e) Volume renderings of normal and IF-OPT reconstructions. (b)-(d), (f), 
Corresponding iso-surfaces reconstructions using three different thresholds (b)-(d) and a IF-
OPT iso-surface reconstruction using a medium threshold (f). (g) shows a IF-OPT iso-surface 
reconstruction of the normal kidney whereas (h) shows an iso-surface reconstruction of same 
kidney based on a normal exposure. The branching epithelial network was stained with 
antibodies against Troma-I and visualized by a Alexa594 secondary antibody. Scalebar in (e) 
corresponds to 100µm in (a)–(f) and scalebar in (g) corresponds to 200µm in (g) and (h). 
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3.4 Human visual system scoring 

In order to evaluate the effect of the proposed IF-OPT method on the visual output and to 
measure its performance in comparison to other methods, 21 trained biologists (trained 
biologist were defined as researchers with at least a Phd and/or MD in medical and/or 
biological science) were presented with 10 OPT volume renderings (see Fig. 8) of the 
specimen shown in Fig. 6. The projection images for each data set had been processed with 
one of the following fusion methods: PCA (principal component analysis) fusing method, 
DWT (discrete wavelet transform) fusing method, SIDWT (shift invariant wavelet transform) 
fusing method, MP (morphology pyramid) fusing method, Laplacian fusing method, PCNN 
(pulse coupled neural network) fusing method, Average (arithmetic mean) fusing method, 
HDRMD (MATLAB direct high dynamic range) fusion method, HDRMN (MATLAB 
normalized intensity high dynamic range) fusion method and IF-OPT (proposed) fusing 
method. The participants were asked to rank the top five (from 1 to 5) images that display the 
most detailed view of the vascular tree in a mouse liver lobe stained for smooth muscle α-
actin. For all images, the participants were blinded to the image enhancement method used. 

 

Fig. 8. Comparison of anatomical structures in a mouse liver lobe (vessels labeled for smooth 
muscle α-actin) using different fusing methods on the exposures shown in Fig. 6. A HVS score 
of all methods ranked the IF-OPT method (h) as the one providing most detail of the vascular 
network (for details see Table 1.). Scale bar in (a) corresponds to 1.8mm in (a)-(j). For the 
details of the methods see section 3.4. 

In this survey, 90.5% of the participants scored IF-OPT as the best performing method 
(average rank 1.48), demonstrating that IF-OPT surpasses the other tested methods for image 
enhancement using this type of specimen. For details on the HVS score of all methods see 
Table 1.  
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Table 1. Comprehensive data from HVS ranking of images in Fig. 8  

AR = average rank, R = Rank. HVS scoring was performed as described in section 3.4. 

Note, for the PCNN, the used parameters were the ones shown in the original paper [14],  
which are as follows: β1 = β2 = β 3 = 0.5 ; convolution core 

K =

0.1091 0.1409 0.1091

0.1409 0 0.1409

0.1091 0.1409 0.1091

⎡
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, M (⋅) = W (⋅) = Y n −1⎡⎣ ⎤⎦⊗ K , where ⊗ denotes 

convolution operation, level factor σ = 1.0, time constant αT = 0.012, and normalized offset 
parameter VT = 4000. β k

 denotes the weighting factor of the kth channel while σ is the level 
factor to adjust the average level of internal activity. 

Additionally, in the image fusion toolbox (ver 1.0 available from 
http://www.metapix.de/toolbox.htm), developed by Oliver Rockinger, Metapix, the settings 
for the wavelet and pyramid based methods are as follows: The 2D shift invariant discrete 
wavelet transform (SIDWT) used the wavelet filters ‘Haar’ (Daubechies family) and the 
discrete wavelet transform (DWT) used the wavelet filters 'db2’ (Daubechies family). Both 

ID  PCA  DWT  SIDWT  MP  Laplacian PCNN Avarage
IF‐
OPT 

HDRMN  HDRMD

a  6 6 6 4 5 3 6 1 6 2 
b  6 6 6 5 3 6 4 1 6 2 
c  6 6 6 4 6 3 6 1 5 2 
d  6 6 6 4 3 6 6 1 5 2 
e  6 6 6 3 4 6 6 1 5 2 
f  6 6 6 3 4 6 5 1 6 2 
g  6 6 6 4 3 6 5 6 1 2 
h  6 6 6 3 4 6 6 1 5 2 
i  6 6 6 5 4 6 6 1 3 2 
j  6 6 6 5 3 6 4 1 6 2 
k  6 6 6 4 3 6 6 1 5 2 
l  6 6 6 5 6 6 2 1 4 3 
m  6 6 6 3 4 6 5 1 6 2 
n  6 6 6 3 4 6 6 1 5 2 
o  6 6 6 4 3 6 6 1 5 2 
p  6 6 6 3 4 6 5 1 6 2 
q  6 6 6 3 4 5 6 1 6 2 
r  6 6 6 3 4 6 6 1 5 2 
s  6 6 6 2 3 6 5 6 4 1 
t  6 6 6 3 5 6 6 1 4 2 
u  6 6 6 3 4 6 5 1 6 2 
AR  6 6 6 3.62 3.95 5.67 5.33 1.48 4.95 2 
R  8 8 8 3 4 7 6 1 5 2 
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transforms run in symmetric-padding (half-point) mode as their DWT extension mode.  
Parameters of these methods, in addition to the morphology pyramid and Laplacian pyramid 
algorithms are as follows: decomposition level 4th, coefficient selection rule for the highpass 
combination is ‘maximum value’ and coefficient selection rule for the lowpass combination is 
‘average value’. The MATLAB “makehdr” built-in function was used which efficiently 
implements the algorithm of Reinhard et al. [38]. 

 

Fig. 9. Effect of IF-OPT using an alternative camera. The images depict volume renderings of 
an adult C57BL/6 (Taconic) left lateral liver lobe (lobus sinister lateralis) labeled for smooth 
muscle α-actin. Images were acquired using an Andor iKon-M DU934N-BV 16bit CCD 
camera fitted to the OPT scanner setup described by Sharpe et al [1, 30]. This camera has a 
considerably higher dynamic range compared to the camera delivered with the Bioptonics 3001 
scanner used in Figs. 6-8 of this report. (a) depicts a single, normal, exposure (8000ms) image 
and (b) an IF-OPT image comprised of three exposures/ projection, low (1500ms), normal 
(8000ms) and high (15000ms). Scalebar in (b) corresponds to 2mm in (a) and (b).  
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Fig. 10. Comparison of alternative use of the components of the IF-OPT approach. The images 
depict volume renderings of an adult C57BL/6 (Taconic) left lateral liver lobe (lobus sinister 
lateralis) labeled for smooth muscle α-actin. The images illustrate: (a) “Normal” OPT (same as 
in Fig. 6(b)), (b) the effect of applying CLAHE to the projection images prior to reconstruction, 
(c) the effect of applying CLAHE to the 2D tomographic data of the fused projection images 
and (d) the effect of IF-OPT as described in section 3.2. For blinded HVS ranking of (a) - (d), 
see Table 2. Scale bar in (a) corresponds to 1.8mm in (a)-(d). 
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Table 2. Comprehensive data from HVS ranking of images in Fig. 10. 

ID  Normal OPT 
Normal OPT 

CLAHE 
CLAHE post 

Reconstruction 
IF‐OPT 

a  4 2 3 1 

b  4 2 3 1 

c  2 3 4 1 

d  4 2 3 1 

e  4 2 3 1 

f  4 2 3 1 

g  4 2 3 1 

h  4 2 3 1 

i  3 2 1 4 

j  4 2 3 1 

k  4 2 3 1 

l  4 2 3 1 

m  4 2 3 1 

n  4 1 3 2 

o  4 2 3 1 

p  4 2 3 1 

q  4 2 3 1 

r  4 2 3 1 

s  2 3 4 1 

t  4 2 3 1 

AR  3.75 2.05 3 1.2 

R  4 2 3 1 

AR = average rank, R = Rank. HVS scoring was performed as described in section 3.4 with 
n=20. 

5. Discussion 

This work advocates the utility of IF-OPT for the analysis of structures with highly variable 
signal intensities. By assessing such structures (in our case epithelial or vascular networks) in 
different organs, we demonstrate the added value of the IF-OPT imaging approach for this 
purpose as applied to highly challenging specimens. Obviously, the possibility to assess this 
type of specimens is dependent on the dynamic range of the detector. In this report, the 
experiments were carried out on the only OPT scanner that currently has been made 
commercially available. It should be noted however that also when using a high-end camera 
with comparably superior dynamic range, in our case fitted to the original setup for OPT 
imaging described previously [1, 30], the IF-OPT approach greatly benefits the results (see 
Fig. 9). In parallel to this work, a HDR based method, in which nine different exposures were 
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used, was developed for transmission OPT of small specimen in a setup with a low bit depth 
camera (8bit) [8]. In comparison, the IF-OPT approach proposed herein greatly reduces the 
complexity in data processing and does not require retrieval of the cameras response function. 
Whereas the IF-OPT approach is capable of addressing the issue of highly variable contrast 
intensities using only three exposures, the higher number of exposures used for each 
projection view in the HDR approach [8] increase the demand for data storage capacity (and 
thereby the potential need for down sampling) and increase scanning times. Furthermore, for a 
fluorescent specimen, an increased number of exposures for each projection view also 
increase the potential of adverse effects due to photo bleaching. It should also be noted that in 
comparison with algorithms for HDRMN and HDRMD, tested here, IF-OPT delivers 
improved performance.  

The proposed method consists of different techniques applied to the original projection 
data: Image Fusion (IF), histogram adjustment (CLAHE) and filtered back projection (FBP). 
In the case of IF-OPT, IF and CLAHE are applied as described in Eq. 1 to the projection data 
and the resulting fused images are then reconstructed using FBP. It could be argued that by 
individually manipulating the projection images prior to reconstruction we violate the basic 
assumptions for tomographic reconstruction by FBP. However, these assumptions are already 
violated in the original, and most common, implementation of OPT [1]. I.e., by using an 
implementation of the FBP algorithm, attenuation and not emission is assumed in the imaged 
volume. Despite of this known theoretical drawback, OPT has proven to be immensely useful 
in a large number of biological applications. It is important to note that in imaging based on 
biomarkers, especially when looking at anatomical data, it is most commonly sufficient to 
detect the presence or absence of the marker and it is not always essential to have a linear 
mapping between the perceived intensity of the marker and its actual concentration. Thus it is 
not critical that the back projection yields quantitatively accurate intensity values and 
consequently it is not critical to exactly meet the assumptions on which the FBP algorithm is 
built. In the case of IF-OPT, however, the main reason for not applying the contrast 
enhancement after tomographic reconstruction is computational complexity. Since performing 
CLAHE in full 3D would increase the complexity by an order of magnitude from O(n2) to 
O(n3) and since n typically is in the order of 1024 it is not trivial to execute this type, or 
similar, operations in the reconstructed volume on computers easily accessible to the general 
lab performing OPT. The implementation of an efficient 3D CLAHE that could be applied to 
data in the gigabyte scale is an open research question of its own and goes beyond the scope 
of this paper. In Fig. 10, the effect of applying CLAHE at different stages in the imaging 
process is shown. Note that in generating Fig. 10(c), CLAHE was due to computational 
complexity applied to 2D-data that was stacked to generate the 3D volume, thus it is just an 
approximation of applying CLAHE to the reconstructed volume. It is however clear from the 
blinded HVS scoring (se Table 2.) where expert readers were asked to rank how well 
anatomical structures could be seen in different volumes that IF-OPT turned out to be superior 
to any other order of applying the techniques of fusion, histogram adjustment and 
tomographic reconstruction. In a recent study [39], we described a protocol whereby CLAHE 
was utilized to drastically improve the quantitative and morphometric assessments of 
pancreatic islet and β-cell mass distributions. Whilst both this approach and the method 
presented here exploit CLAHE, there are as outlined above several unique features of the IF-
OPT technique that distinguish it from the pure CLAHE method. 

Since the suggested IF-OPT approach alters first order statistics, studies that are 
concerned with intensity-level based measurements (e.g. protein expression levels) should 
keep this in mind when dealing with image fusion in general. It should further be emphasized 
that the IF-OPT approach demands that different exposure scans are properly aligned or else a 
post-registration alignment must be carried out. Post-registration alignment apart, one 
possibility to deal with imprecisions in the mechanical setup, and thereby imperfect image 
registration between exposures, would be to take multiple exposures at each rotational 
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position. This approach however does not cope with the issue of system imperfections 
between projections. In our setups, where the different exposures are obtained after a full 
rotational cycle, we have verified a typical pixel shift between rotations in the sub-pixel 
domain. As mentioned above, an issue related to the mode of image registration is the topic of 
photo bleaching. As demonstrated by Henkelman and co-workers, normalizing each image 
registration according to the rate of signal decay could contribute to improve the results in 
OPT imaging [40]. In this respect, performing the image registration for each exposure of a 
projection between each rotational cycle is likely to reduce the difference in signal intensity 
between the first and the last projection, all exposures included. With these considerations 
accounted for, IF-OPT provides a robust platform for further exploration into a range of 
research fields. In addition to the organ systems assessed in this report, such studies may 
include assessments of high-low signal intensity structures in a range of tissues in normal and 
genetically modified animals or pathological biopsies. Examples of such research areas are, 
but not limited to, secondary vascular disorders in experimental diabetes research or neuronal 
pathways in neuronal disorders. The technique may further be explored for fusion or co-
registration with other source modalities (e.g., CT, PET, MRI). Altogether, the described 
method for image fusion of OPT projection data may open up several new research avenues 
for the OPT imaging technique.  
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